Conundrum of the Cusps: Or too many teeth

Snap and Grab: One way to snare a springtail

One of the interesting things about the human mind is that although we tend to be fascinated by the diversity in Nature, we endlessly try to simplify what we see, to control Nature by reducing it into a smaller number of units. We value simple explanations over complex ones and even codify this preference in science with Occam’s Razor. This has various formulations, but Frustra fit per plura quod potest fieri per pauciora at least comes from Occam’s writings and fits this posting: ‘It is futile to do with more things that which can be done with fewer’.

Another long bite for a springtail

It is winter now, if a rather mild one so far, but still not the best time for observing living arthropods. However, a friend has posed a challenge – how many living arthropods can you find during winter in Alberta? So, I’ve been wandering around the house taking bad pictures of tiny insects and far too large spiders and trying to coerce my wife into taking better ones. However, exams and marking reign at the moment and she suggested: why not see what is living in the soil of our house plants? Brilliant idea! – at least 21 species in the first extraction, 2/3rds mites, but also 7 species of Collembola – springtails. As I was perusing said springtails I noticed that the large entomobryid and isotomids all were missing the distal segements of their antennae.

Entomobryid springtail with its antennae intact

Although Tennyson’s “Tho’ Nature, red in tooth and claw, With ravine, shriek’d against his creed [i.e  God’s]” is most colourfully exemplified by vertebrate predators at their dinner, you can get an idea of what life in the soil is like for springtails by viewing Jeffrey Newton’s entertaining video. The spring in the springtail is one way these animals avoid being eaten, as are the slippery scales on some (as in the SEM above) and the chemical defenses of others. Apparently, shedding the ends of the antennae is another (good news is that they can grow back – as one victim with half-regrown antennae demonstrated).

Another snap & grab - but more shear-like than toothy

In my house plant ecosystem, the antenna-snapper seems to be a species of Holaspulus. These are rather large predatory mites (Mesostigmata, Parholaspididae) more typically found in tropical areas. But then, I guess the greenhouses these plants came from do all they can to mimic the tropics including, it seems, hosting tropical mites.

Long snapping chelicerae on a Holaspulus adult female

As you can see from the image above (this mite is from Queensland), Holaspulus  have very long chelicerae, almost half the length of their body. These chalicerae can be shot out to snap and grab prey, such as springtails. I know this is true through my own observations, but I also know this for the other chelicerae of the very different mites illustrated above and several other unrelated genera.  Just as springtails have a diversity of means of escaping becoming dinner, so do their predators of capturing them.

Diagram of Holaspulus chelicera deployed: snap and grab

And just to keep things clear as mud, I know of many mites with much less impressive chelicerae that also seem to have no problem catching springtails, e.g. the parasitid mites in Jeffrey’s video. Another example,  species of Podocinum have fairly typical chelicerae, not obviously enlarged at all, but are seemingly efficient predators of springtails.

Business end of a Podocinum: not at all springtail-challenged

Such cheliceral modesty is true of many mesostigmatans that prey on springtails – they lack the snap-trap type of chelicera. But  some such as Podocinum species do have extraordinarily attenuated legs.

Podocinum fishes for springtails with it elongate front legs

I’ve watched Podocinum fishing for springtails. They are slow-moving, stately mites, but as they wander the front legs dangle in front exploring their world. When a springtail is encountered by the light touch of the long distal setae, the mite pauses, and then quickly scopes their prey in towards their chelicerae: another springtail become mite fodder.

Epicriid mite with sticky setae to trap springtails

Epicriid mites carry this long-legged fishing one step further. The long ventral setae on the tips of the front legs have blobs of glue with which they capture their collembolan prey (see Alberti 2010*). So we have yet another way to scarf-up a springtail, but why such diversity in such a simple pursuit?

Another toothful springtail nemisis?

As far as I know, no one has studied the feeding behaviour of the mite above, but I suspect springtails are part of its diet. For those who like a challenge, try naming the unnamed cheliceral images. A genus would do and you have five such unlabelled images to guess upon.

I know of only one genus with multiple rows of retrorse teeth - care to guess?

*Alberti, Gerd. 2010. On predation in Epicriidae (Gamasida, Anactinotrichida) and fine-structural details of their forelegs.  Soil Organisms  Volume: 82  ( 2);  179-192.  (Open Access – search for the title and the pdf is yours)

9 Responses to “Conundrum of the Cusps: Or too many teeth”

  1. Adrian D. Thysse Says:

    Splendid adaptations, and fantastic images.

    You should set up a gallery with shopping cart for all these magnificent mite (and springtail images). People should have the opportunity to hang these on their walls.

  2. Warren Says:

    Amazing post! Thank you for these living room lions.

  3. Jeffrey Newton Says:

    Fantastic post, with great images as always.

  4. Ted C. MacRae Says:

    I can’t hazard a guess in the challenge, but those are some impressive chelicerae and even better images of them.

  5. The Wild Life Team (@YourWild_Life) Says:

    Amazing photos! Our citizen science group is REALLY interested in food webs INSIDE our homes – like exactly what you describe in your houseplant ecosystem! Would you be willing to contribute to our Flickr group ( and participate in further discussion?

  6. publicamateur Says:

    Thank you so much for this! I just started studying soil science and am looking at samples under the microscope (SEM it is not) and i keep seeing these hook forms and wondered what they are! Fantastic!

  7. Drhoz Says:

    This is probably going to be a silly question, based on the abysmally limited info I can provide, but do Epicriids occur in Australia? Or more specifically, Perth? Because I found a good handful of large bright yellow mites with very long forelegs slowly clambering around the underside of some damp, fungus-encrusted firewood.

    • macromite Says:

      Hi Drhoz,

      There is at least one undescribed species of Epicriidae in Queensland, but epicriids are small (body under 0.5 mm) and a number of mites look superficially similar (e.g. Podocinum species – Australia has several).

      Large, shiny yellowish mites in damp rotting wood could be a Linopodes or related mite – very long legs and soft-bodied. Try the BugGuide pages:



      • Drhoz Says:

        As it happens Linopodes was already another possibility I was considering🙂 But thanks for the quick reply! It certainly helps🙂

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: